

PAP-003-001513 Seat No. _____

B. Sc. (Sem. V) (CBCS) Examination

October / November - 2018

Mathematics: Paper-BSMT-501(A)

(Mathematical Analysis & Group Theory)

Faculty Code: 003

Subject Code: 001513

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instruction: All questions are compulsory.

1 Answer the following questions in short:

- (1) Define metric space.
- (2) Give an example of a subset of metric space R which is not open and closed.
- (3) Define limit point.
- (4) Define perfect (complete) set.
- (5) If E=[1,2] is a subset of metric space R then find E^0 .
- (6) Define Lower Riemann Integration.
- (7) If $f(x) = \frac{20}{x}$, $x \in [2,20]$ and partition $P = \{1,4,5,20\}$ then find ||P||.
- (8) State fundamental theorem of Riemann integration.
- (9) State Darboux's theorem.
- (10) State general form of first mean value theorem.
- (11) Define Permutation.
- (12) Define Alternating Group.
- (13) Define Right coset.

- (14) If f = (4,5)(2,3,7) then find O(f), where $f \in S_8$.
- (15) For group $(Z_5,+_5)$, O(4) =
- (16) Define Inner automorphism.
- (17) For the group $(Z_6,+_6)$, find generators of Z_6 .
- (18) Define Index of subgroup H in group G.
- (19) Define Factor group.
- (20) Define Isomorphism of groups.
- 2 (a) Answer any three:

6

- (1) Define norm of partition and finer partition.
- (2) If (X,d) is a metric space and $A,B \subset X$ and $A \subset B$ then Int $A \subset Int B$.
- (3) Obtain border set of the subset (-1,1) of metric space R.
- (4) Determine whether set $\{x \in R/x^2 2x 1 = 0\}$ is open or closed set.
- (5) If $f(x) = \frac{20}{x}$, $x \in [2,20]$ and partition $P = \{2,4,5,20\}$ then find U(P,f).
- (6) Evaluate: $\lim_{n\to\infty} \frac{1}{n^2} \sum_{r=0}^{n-1} \sqrt{n^2 r^2}$.
- (b) Answer any three:

- (1) If f is increasing function on [a,b] then prove that f is R-integrable.
- (2) If (X,d) is a metrix space and $A,B \subset X$ the prove $(A \cap B)' = A' \cap B'$.
- (3) Prove that every continuous function f on [a,b] is Riemann integrable on [a,b].

- (4) If f and g are R-integrable on [a,b] then prove that f+g is also R-integrable on [a,b].
- (5) Prove that every finite subset of any metric space is a closed set.
- (6) State and prove principle of Housdorff's in metric space.
- (c) Answer any two:

10

- (1) In usual notation prove that \overline{E} is a closed set in metric space.
- (2) State and prove necessary and sufficient condition for a bounded function to be R-integrable.
- (3) Prove that $\frac{\pi^3}{24} \le \int_0^{\pi} \frac{x^2}{5 + 3\cos x} dx \le \frac{\pi^3}{6}$.
- (4) Prove that $\lim_{n\to\infty} \left(\frac{n^n}{n!}\right)^{\frac{1}{n}} = e$.
- (5) Prove that $\frac{3}{4}$ is in cantor set.
- 3 (a) Answer any three:

- (1) If $\sigma = (134)(25)$, $\sigma \in S_5$ then find σ^{-1} .
- (2) If $f: R \to R$ is defined as $f(x) = x^2$ then check whether f is a permutation or not.
- (3) Prove that intersection of two subgroups of a group is again a group.
- (4) Prove that the identity element is only idempotent element in any group.
- (5) If $a^2 = e$ for each element a of a group G then show that G is commutative.
- (6) Prove that every element of a finite group is of finite order.

(b) Answer any three:

- 9
- (1) Let $H \le G$ and let $a, b \in G$ then show that $aH = Ha \Leftrightarrow ab^{-1} \in H$.
- (2) Prove that a group of prime order is cyclic.
- (3) If H is a normal subgroup of group G with $i_G(H) = m$ then prove that $a^m \in H$; $\forall a \in G$.
- (4) Draw the lattice diagram of Z_8 .
- (5) If H and K are any two subgroups of group G such that (O(H,O(K)) = 1 then show $H \cap K = \{e\}$.
- (6) If G is a finite group, then O(a)/O(G); $\forall a \in G$.
- (c) Answer any two:

- (1) State and prove Cayley's theorem.
- (2) Prove that any two right cosets of a subgroup H in group G are either identical or disjoint.
- (3) State and prove Lagrange's theorem for finite groups.
- (4) Prove that every permutation $f \in S_n$ can be expressed as a composition of two disjoint cycles.
- (5) Show that $(R,+) \cong (R_+,\bullet)$.